ON MORITA THEORY FOR SELF-DUAL MODULES

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Morita theory for self-dual modules

Let G be a finite group and let k be a field of characteristic p. It is known that a kG-module V carries a non-degenerate G-invariant bilinear form b if and only if V is self-dual. We show that whenever a Morita bimodule M which induces an equivalence between two blocks B(kG) and B(kH) of group algebras kG and kH is self-dual then the correspondence preserves self-duality. Even more, if the bil...

متن کامل

Self-dual Hall modules

of the Dissertation Self-dual Hall Modules by Matthew Bruce Young Doctor of Philosophy in Mathematics Stony Brook University 2013 In the past twenty years Hall algebras have played an important role in many areas of mathematics and physics, including the theory of quantum groups and string theory. In its original setting the Hall algebra is constructed from a finitary exact category, the multip...

متن کامل

A Morita Theorem for Dual Operator Algebras

We prove that two dual operator algebras are weak Morita equivalent in the sense of [4] if and only if they have equivalent categories of dual operator modules via completely contractive functors which are also weakcontinuous on appropriate morphism spaces. Moreover, in a fashion similar to the operator algebra case we can characterize such functors as the module normal Haagerup tensor product ...

متن کامل

Morita Theory of Comodules

By a theorem due to Kato and Ohtake, any (not necessarily strict) Morita context induces an equivalence between appropriate subcategories of the module categories of the two rings in the Morita context. These are in fact categories of firm modules for non-unital subrings. We apply this result to various Morita contexts associated to a comodule Σ of an A-coring C. This allows to extend (weak and...

متن کامل

T-dual Rickart modules

We introduce the notions of T-dual Rickart and strongly T-dual Rickart modules. We provide several characterizations and investigate properties of each of these concepts. It is shown that every free (resp. finitely generated free) $R$-module is T-dual Rickart if and only if $overline{Z}^2(R)$ is a  direct summand of $R$ and End$(overline{Z}^2(R))$ is a semisimple (resp. regular) ring. It is sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Quarterly Journal of Mathematics

سال: 2008

ISSN: 0033-5606,1464-3847

DOI: 10.1093/qmath/han008